

Carlos Argüelles

NuTau2021 September, 2021 Online

Outline

- The odyssey of HNL tau searches
- Three, four, or more neutrinos
- A search for misbehaving neutrinos

Outline

- The odyssey of HNL tau searches
- Three, four, or more neutrinos
- A search for misbehaving neutrinos

A triangle of opportunity

Search using atmospheric neutrinos

SM

BSM

And decays:

Signature is like a low-energy double bang

Search for HNLs

Prospects in other experiments

Nice complementarity between natural and anthropogenic neutrino sources!

*Contours represent one HNL event

Atkinson et al arXiv:2105.09357 see also Coloma et al 2007.03701 for non-double-bang event estimations

Prospects in other experiments

Nice complementarity between natural and anthropogenic neutrino sources!

*Contours represent one HNL event

Atkinson et al arXiv:2105.09357 see also Coloma et al 2007.03701 for non-double-bang event estimations

Signature in IceCube

Reconstruction Performance

Reconstruction of low-energy double cascades is challenging.

Distance resolution is poor due to two scenarios: contained and unconfined double cascades.

Signal vs background

For $|U_{\tau 4}| = 10^{-1}$: $S/\sqrt{B} \sim 5 \times 10^{-6}$ at BDT = -0.2

Estimated Sensitivity

Current sensitivity is not as good as expected due to large backgrounds.

But, there is hope!

The IceCube-Upgrade

Improved sensitivity to low-energy neutrinos and ice characterization.

Improved light-collection for low-energy events

Summer Blot Neutrino2020

Recent constraints from ArgoNeuT

- HNLs are produced in the NuMI target.
- 120 GeV protons producing D/Ds, which can decay to taus subsequently producing HNLs
- Search focused on $N \to \nu \mu^+ \mu^-$

Why does the CHARM bound stop abruptly?

Why does the CHARM bound stop abruptly?

A blast from the past!

- Authors revisited the HNL flux prediction
- Added contribution from tau decay.
- Opportunity triangle gone.

Boiarska et al arXiv:2107.14685

A blast from the past!

0.001

How do we go beyond this?

- Added contribution from tau decay.
- Opportunity triangle gone.

Boiarska et al arXiv:2107.14685

Outline

- The odyssey of HNL tau searches
- Three, four, or more neutrinos
- A search for misbehaving neutrinos

The short-baseline anomalies have motivated searches for more neutrinos

LSND

These experiments observe ν_e appearance at L/E ~ 1 km/GeV!

This points to ∆m²~1eV²

MiniBooNE

We will hear exciting news about this later today at the FNAL Wine & Cheese!!!

The short-baseline anomalies have motivated searches for more neutrinos

These experiments observe ν_e appearance at L/E ~ 1 km/GeV!

But ... what about heavier neutrinos that do not appear through oscillations, but can be produced kinematically ...

today at the FNAL Wine & Cheese!!!

A broad net: testing unitarity

Parke & Ross-Lonergan arXiv:1508.05095 See talk by S. Parke earlier this week!

2015

A broad net: testing unitarity

2020!

Conclusion remains the same:

we need to study the tau row

Ellis et al 2008.01088

A broad net: testing unitarity

2021!!

Addition of tau appearance measurements with atmospheric neutrinos has a significant impact!

Denton & Gehrlein arXiv:2109.14575

 10^{-1}

 $1 - (|U_{\tau 1}|^2 + |U_{\tau 2}|^2 + |U_{\tau 3}|^2)$

A. Ishihara for IceCube 1908.09441 See talk by Jason Koskinen

 10^{0}

How can IceCube tau appearance test unitarity?

Naïvely low-energy electron- and tau-neutrinos are morphologically indistinguishable

Denton & Gehrlein arXiv:2109.14575

Three important elements:

- Well-known cross sections for all neutrino flavors (DIS dominated, see Jason Koskinen back-up slides!)
- Energy distribution of cascades produced by taus is shifted to lower energies.
- Tau-induced event rate are affected by well-defined cross-section threshold
 - T. Stanev PRL (1999)
 - P. Denton arXiv:2109.14576

Outline

- The odyssey of HNL tau searches
- Three, four, or more neutrinos
- A search for misbehaving neutrinos

Are there new neutrino interactions? Non-

IceCube arXiv:2106.07755 $\epsilon_{\tau\tau}^{\oplus} - \epsilon_{\mu\mu}^{\oplus} \in [-0.2, 0.2]$ 10^{1} $\epsilon_{\mu\tau}^{\oplus} \in [-0.05, 0.05]$ 10^{1} 10^{2} 10^{3} E_{ν} (GeV)

Non-standard neutrino interactions

$$\mathcal{L}_{\text{NSI}} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \varepsilon_{\alpha\beta}^{f,P} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf)$$

$$\varepsilon_{\alpha\beta} = \sum_{f,P} \varepsilon_{\alpha\beta}^{fP} \frac{N_f}{N_e}$$

$$H_{\text{mat}} = \sqrt{2}G_F N_e(x) \begin{pmatrix} 1 + \varepsilon_{ee}(x) & \varepsilon_{e\mu}(x) & \varepsilon_{e\tau}(x) \\ \varepsilon_{e\mu}^*(x) & \varepsilon_{\mu\mu}(x) & \varepsilon_{\mu\tau}(x) \\ \varepsilon_{e\tau}^*(x) & \varepsilon_{\mu\tau}^*(x) & \varepsilon_{\tau\tau}(x) \end{pmatrix}$$

Measurements using IceCube-DeepCore

- Three years of IceCube-DeepCore data were analyzed.
- Constraints dominate over many of the NSI parameters.

What about IceCube high-energy NSI searches?

At high-energies signature predominantly a change in the zenith distribution.

No interference/ dependence on standard oscillation parameters.

What about IceCube high-energy **NSI** searches?

Analysis Sensitivity vs Previous Results

- Use same event selection as recent eight year sterile neutrino search.
- Significant improvement in sensitivity!
- Stay tuned for results!

G. Parker NuFACT2021

Take home message

- Searching for new physics with tau neutrinos is challenging, but exciting.
- Recent constraints on HNLs mixing with taus close the "opportunity triangle." Background estimations critical for these searches.
- Tau appearance measurements with atmospheric and astrophysical neutrinos significantly improve constraints on tau row unitarity tests.
- Searches for NSI with mu-tau element among the strongest. New results soon!

Thank you!

Bonus slides

Menu of other explanations

New signatures

Gninenko 1107.0279 Magill et al 1803.03262 Heavy neutrino O(MeV), magnetic moment, decay

Bertuzzo et al 1807.09877, Ballett et al 1808.02916, CA, Hostert, Tsai et al 1812.08768 Heavy neutrino O(1-100MeV), light Z', decay

Heavy Neutrino Decay

Bai et al 1512.05357

Dentler et al 1911.01427, de Gouvea et al 1911.01447, Hostert & Pospelov 2008.11851

Heavy O(100MeV) decay to ν_e

Fisher et al 1909.0956, CA, Foppiani, Hostert 2109.03831

Heavy O(100MeV) decay to photon

Oscillations+X

Assadi et al 1712.08019 Resonant matter effect

Moss et al 1711.05921, Moulai et al 1910.13456 Steriles +decay

> Liao et al 1810.01000 Steriles + NCNSI + CCNSI

More than one at a time

S. Vergani et al arXiv:2105.06470 Light Sterile + Heavy neutrino O(100MeV), magnetic moment

IceCube Hints

❖Best fit:

$$\Delta m_{41}^2 = 4.47_{-2.08}^{+3.53} \text{eV}^2$$

 $\sin^2(2\theta_{24}) = 0.10_{-0.07}^{+0.10}$

- Sterile neutrino hypothesis is preferred to null
- Null is rejected at 8% p-value

Event distribution (data) and best-fit shape (Monte Carlo)

- ❖ Best-fit shape effect is in a low-statistics regime
 - Hard to see by eye in the data
- But the result does not seem to be a statistical fluctuation
 - Consistent year-to-year

IceCube@Antartica

Talk by A. Trettin@PANIC2021

- very fast, unresolvable oscillations + distortion
- > IceCube: World-leading limits on $|U_{\tau 4}|^2$ and $|U_{\mu 4}|^2$!

Projected sensitivity of sterile search with 8 years of DeepCore data

IceCube will continue improving muon neutrino disappearance searches. "Low energy" sample (<100 GeV) still not studied.

How does the IceCube analysis work?

We measure two things:

- length (direction)
- energy

We extract two parameters:

- squared mass difference
- mixing angle

Example signatures in analysis observables

Non-Minimal HNL: di-electron scenario

E. Bertuzzo et al., PhysRevLett.121.241801P. Ballett, M. Ross-Lonergan, S. Pascoli, PhysRevD.99.071701

Non-Minimal HNL: di-electron scenario

E. Bertuzzo et al., PhysRevLett.121.241801

A. Abdullahi, M. Hostert, S. Pascoli, arXiv:2007.11813

P. Ballett, M. Ross-Lonergan, S. Pascoli, PhysRevD.99.071701

Good fit to the energy and angular distribution.

Non-Minimal HNL: di-electron scenario

Non-Standard Matter Effects (3+1+NSI)

J. Liao et al

A. Esmaili et al https://arxiv.org/abs/1810.11940

See also Denton et al Bhupal Dev et al

Direct Probes of Matter Effects In Neutrino Oscillations

(https://www.snowmass21.org/docs/files/summaries/NF/SNOWMASS21-NF1_NF3-TF0_TF0_Peter_Denton-010.pdf)

Non-Standard Matter Effects (3+1+NSI)

J. Liao et al

 10^{-1}

 10^{-3}

A. Esmaili et al https://arxiv.org/abs/1810.11940

 10^{-2}

See also Denton et al Bhupal Dev et al

10⁰

Direct Probes of Matter Effects In Neutrino Oscillations

(https://www.snowmass21.org/docs/files/summaries/NF/SNOWMASS21-NF1_NF3-TF0_TF0_Peter_Denton-010.pdf)

 10^{-1}

 $\sin^2 \theta_{24}$

Non-Minimal HNL: photon scenario

$$\sum_{j=1}^{3} \bar{\mathcal{N}}_{j} (i \partial \!\!\!/ - M_{j}) \mathcal{N}_{j} + \sum_{i=1}^{3} (d_{i,j} \bar{\nu}_{i} \sigma_{\mu\nu} F^{\mu\nu} \mathcal{N}_{j} + h.c.)$$

Parameters	χ^2/dof				
$(\sin^2 2 heta, d, m_{\mathcal{N}})$	$3+1+\mathcal{N}$		3 + 1		
	$E^{QE}_{ u}$	$\cos \theta$	$E^{QE}_{ u}$	$\cos \theta$	
(0.30, 3.1, 376)		32.1/18			
(0.69, 2.8, 376)	•	31.4/18		•	
(2.00, 5.6, 35)	20.2/8	36.7/18	27.6/10	40.8/20	
(0, 0, 0)	34.1/10	99.4/20	same	same	

Non-Minimal HNL: photon scenario

Used to Test	References (Flux Type)	Type of Fit	
$\bar{\nu}_e$ disappearance	[39–43] (Reactor)		
ν_e disappearance	[44–46] (Source)		
$ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} $ appearance	$[47, 48](\pi/\mu \text{ DAR})$	↑	Explained by eV-
$ \nu_{\mu} \rightarrow \nu_{e} $ appearance	$[49](\pi/\mu \ { m DIF})$	3+1-only	sterile
$ \bar{ u}_{\mu} $ disappearance	$[50-53] \ (\pi/\mu \ { m DIF})$	↓	
$ u_{\mu} $ disappearance	$[51, 54-56] (\pi/\mu \text{ DIF})$		Explained
$3+1+\mathcal{N}$	[8] (MiniBooNE BNB ν)	\mathcal{N}	by MeV- HNL
			IIINL

Fit type:	3+1-only	3+1-complete
χ^2_{app}	48	79
N_{app}	2	2
χ^2_{dis}	557	557
N_{dis}	3	3
χ^2_{glob}	615	664
$egin{array}{c} \chi^2_{glob} \ N_{glob} \end{array}$	3	3
χ^2_{PG}	10	28
N_{PC}	2	2
p-value	7E-03	8E-07
$N\sigma$	2.7σ	4.8σ

Tension

